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NOVEL THREE-DIMENSIONAL VERTICAL INTERCONNECT
TECHNOLOGY FOR MICROWAVE AND RF APPLICATIONS

Kavita Goverdhanam1, Rainee N. Simons2, and Linda P.B. Katehi1

1Radiation Laboratory, EECS Department, University of Michigan,
Ann Arbor, Michigan 48109-2122
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Abstract—In this paper, novel 3D interconnects suit-
able for applications in microwave and RF integrated
circuit technology have been presented. The intercon-
nect fabrication process and design details are
presented. In addition, measured and numerically mod-
eled results of the performance of the interconnects have
been shown. The results indicate that the proposed tech-
nology has tremendous potential applications in
integrated circuit technology.

I. INTRODUCTION

Recently, Microwave and RF integrated circuits (ICs)
based on Silicon/Silicon germanium device technology
have emerged as a viable alternative to ICs based on III-V
semiconductor device technologies for wireless applica-
tions. These applications have experienced an exponential
growth during the past few years. Current state-of-the-art
digital ICs are also based on silicon technology and have
the potential to be mono-lithically integrated with the above
analogue ICs. Therefore, it is apparent that future genera-
tion of silicon analog circuits would have integrated digi-
tal control functions to enable them to make intelligent
decisions. These advanced silicon mixed signal ICs would
require efficient interconnects to allow combining differ-
ent transmission media, such as, Coplanar Stripline (CPS)
and Coplanar Waveguide (CPW) for maximum design flex-
ibility. In addition, they are useful for enhancing packing
density in the vertical direction as in small hand held com-
munication devices. The interconnects have to be small
in size for low parasitic coupling capacitances, and simple
to fabricate for high yield and low manufacturing cost.

In this paper, we present several new design concepts
for three-dimensional (3D) interconnects on a high resis-
tivity (HR) silicon (ε

r2
 = 11.7) wafer. The 3D interconnects

constitute very small sections of CPS at two levels con-
nected by metallized vias and separated by a thin layer of
spin-on-glass (SOG). CPS has the advantages of eliminat-
ing backside processing due to it’s uniplanar construction,
and greatly simplifying vertical integration by the use of
metallized vias. In addition, CPS being a slot type of trans-
mission line allows easy integration of other transmission
media, such as, slotline, CPW with finite width ground
planes and micro-CPS [1] for greater design flexibility. The
SOG has the advantage of low dielectric constant
(ε

r1
 = 3.1) and hence low parasitic coupling capacitance.

In addition, the SOG also planarizes the circuit and this

facilitates vertical integration [1]. The HR silicon wafer
(ρ > 3000Ω-cm) has the advantage of lowering the signal
attenuation in addition to improving the isolation between
adjacent circuits.

In the following sections, first, the fabrication process
of vertical interconnects is presented. Next, design consid-
erations for the CPS vertical interconnects treated here are
presented. The interconnects that are presented here are:
CPS vertically interconnected overpass with a crossover, a
CPS vertical interconnect with 180° phase shift and a CPW
vertical interconnect with 180° phase shift. Last, in the sec-
tion on results and discussion, first, the measured loss for
CPS lines on HR Silicon is presented. Second, the com-
puted results showing the performance of the CPS vertically
interconnected overpass with a crossover is presented. The
Finite Difference Time Domain (FDTD) [2] technique has
been used to compute the performance of the CPS verti-
cally interconnected overpass with a crossover. Finally, the
measured phase characteristics of the CPS and CPW inter-
connects with 180° phase shift are presented. The experi-
mental work for the purpose of demonstrating the low loss
feature of the interconnects was performed using
RT/duroid. The fabrication and characterization of inter-
connects with SOG-on-HR silicon are currently in progress.
It is interesting to note that the measured and FDTD simu-
lated results indicate that the interconnects presented here
exhibit very good performance over a broad range of
frequencies.

II. INTERCONNECT FABRICATION

To begin the fabrication process, the lower strip con-
ductor of thickness t1 = 0.8 µm is fabricated on the HR
Silicon substrate by a lift-off process [3]. Next, the dielec-
tric spacer layer is built-up to the required thickness by
multiple spin-coats. Accuglass 512 SOG [4] is used as the
dielectric spacer layer. The thickness h1 of the Accuglass
512 SOG used here is 2.0 µm. Lastly, the upper strip con-
ductor of thickness t2 = 2.0 µm is fabricated using the lift-
off process once again. Gold metallization is used for the
conductors.

III. DESIGN CONSIDERATIONS

(a) CPS vertically interconnected overpass with crossover:
A CPS vertically interconnected overpass with a cross-

over on a HR silicon wafer of thickness h
2
 = 400 µm is
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shown in Figure 1. In this interconnect, the CPS strip width
W

1
 = W

2
 = W and the separations S

1
 = S

2
 = S are chosen

such that the characteristics impedance Z
o(CPS)

 is 50Ω. The
thickness of the SOG layer is h

1
. The vertical interconnec-

tion between the first and the second level CPS conductors
are provided by a pair of circular metallized vias. Each via
in a pair is symmetrically located on the strip conductor and
has a diameter d. A via pair is design as a small section of
a vertical balanced transmission line with characteristic
impedance Z

o(via)
 = 50Ω. The Z

o(via)
 is related to the diam-

eter d, separation betßeen vias in a pair S
4
 and the dielec-

tric constant of the medium surrounding the via ε
r1
 through

the expression, Z
o(via)

 = (60/sqrt(ε
r1
))cosh–1(N), where

N = 0.5[(2S
4
/d)2 – 2]. The probe pad at the input and output

for the characterization with microwave wafer probes is
typically about 100 µm × 100 µm in size.

(b) CPS Vertical Interconnect with 180° phase shift:
A CPS 180° phase shifter with vertically interconnected

twisted overpass is shown in Figure 2. In this phase shifter,
the CPS strip width W and separation S are chosen such
that the characteristic impedance Z

o(CPS)
 is 50Ω. The via

diameter d is chosen to be the same as in Figure 1.

(c) CPW Vertical Interconnect with 180° phase shift:
A CPW 180° Phase shifter with vertically interconnected

U-shaped overpass is shown in Figure 3. In this phase
shifter, the CPW center strip conductor and slot widths
S and W are chosen such that the characteristic impedance
Z

o(CPW)
 is 50Ω. The via diameter is chosen to be the same as

in Figure 1.

IV. RESULTS AND DISCUSSION

(a) Measured Loss of CPS on HR Silicon:
In order to estimate the efficiency of the interconnects,

the loss per unit length for 50Ω CPS is measured for a
range of CPS test structures with W ranging from
26 to 133 µm and S ranging from 2 to 10 µm. This range
presents typical dimensions encountered in practical cir-
cuits. In Figure 4, the measured loss is presented as a func-
tion of W and frequency. As an example, for a CPS with
W = 54 µm and S = 4 µm, the meas-ured loss is of the
order of 0.46 dB/mm. The CPS crossover in Figure 1 has a
length of about 328 µm between the via pairs and hence
the loss is estimated to be about 0.15 dB at 20 GHz. How-
ever, instead of choosing such small dimension, if S is cho-
sen to be larger, say 10 µm, the corresponding loss for a 50Ω
line reduces to about 0.25 dB/mm, roughly reducing the
total loss of the CPS crossover to about 0.075 dB at 20 GHz.

(b) CPS vertically interconnected overpass with crossover:
In order to study the performance of this interconnect,

the scattering parameters (S-parameters) were computed
using the FDTD scheme and they are shown in Figure 5.

The computed S-parameters for the overpass alone indi-
cate that the insertion loss, (S

21
) is negligible and that the

return loss (S
11

) is about –28 dB. The computed
S-parameters for the overpass with a crossover shows that
the insertion loss is still very small. However, S

11
 has in-

creased from –28 dB to –12 dB. This increase in S
11

 can be
offset by providing a step compensation as shown in
Figure 1. Simulations with the step compensation are in
progress. Computed S

31
 shows that the coupling between

the overpass and the crossover is less than –40 dB.

(c) CPS and CPW vertical interconnects with 180°
Phase Shift:

The measured phase characteristics for these circuits are
shown in Figures 6 and 7. In these figures, the phase shift
of the interconnect is compared with the phase of an equiva-
lent length of through-line. From the figures, it is observed
that the phase shift of the interconnect is close to 180° over
a very broad range of frequencies. The excess loss of the
interconnect is close to 0.1 dB. FDTD simulations of the
phase shifters are in progress.

V. CONCLUSION

A new 3D interconnect technology suitable for applica-
tions in microwave and RF integrated circuits has been
proposed. Small sections of Coplanar Striplines connected
by metallized vias and separated by a thin layer of spin-
on-glass have been used to realize a variety of broadband
high performance circuits. This technology yields small
sized interconnects which are simple to fabricate. As
examples, the CPS vertically interconnected overpass with
a crossover, and 180° CPS and CPW phase shifters have
been presented. The results obtained indicate the suitabil-
ity of the proposed approach in facilitating 3D integration.

REFERENCES

1. K. Goverdhanam, R.N. Simons and L.P.B. Katehi,
“Micro-Coplanar Striplines–new transmission Media
for Microwave Applications,” 1998 IEEE MTT-S In-
ter. Microwave Symp., Dig., Vol. 2, Baltimore,
Maryland, pp. 1035–1038, 1998.

2. K. Goverdhanam, R.N. Simons and L.P.B. Katehi,
“Coplanar Stripline Components for High-Frequency
Applications,” IEEE Trans. on Microwave Theory and
Techniques, Vol. 45, No. 10, pp. 1725–1729,
Oct. 1997.

3. R. Williams, “Modern GaAs processing Methods,” 2nd
ed., Ch. 6, Norwood, MA: Artech House Inc. 1990.

4. Accuglass® 512 Spin-on-Glass (SOG), Product Bul-
letin, Allied-Signal Inc., Planarization and diffusion
products, 1090 S. Milpitas Blvd., Milpitas CA 95035.



3NASA/TM—1999-209043

Figure 1.—Geometry of CPS overpass with crossover
   W1 = W2 = W = 54 µm S1 = S2 = S = 4 µm, d = 45 µm, 
   S3 = 328 µm, S4 = 58 µm.
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